R&D on CsI(Tl) crystals + LAAPD at USC
Activities report

Martín Gascón

GENP - Grupo Experimental de Núcleos y Partículas
Departamento de Física de Partículas
Universidade de Santiago de Compostela

15th. October, 2007
1. Testing the electronic setup
2. Temperature and voltage dependence of LAAPDs
3. Comparison between APDs and PIN Diodes
4. Non-Uniformity measurements
Test on the electronic setup
Electronic chain dependence

Crystal + LAAPD
- CsI(Tl) crystals of 1 cm² cross-section from Saint Gobain
- LAAPD S8664-1010 from Hamamatsu

Best results after optimising electronic parameters (Cs-137 @ 662 keV)

<table>
<thead>
<tr>
<th>Place</th>
<th>Preamplifier</th>
<th>Amplifier</th>
<th>shap. Time</th>
<th>1 cm</th>
<th>10 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Santiago</td>
<td>Ortec 142</td>
<td>Canberra 2022</td>
<td>4 μs</td>
<td>4.57 ± 0.12</td>
<td>4.84 ± 0.12</td>
</tr>
<tr>
<td>GSI (Jul-Aug)</td>
<td>Canberra 2001</td>
<td>Ortec 572</td>
<td>6 μs</td>
<td>4.55 ± 0.09</td>
<td>4.87 ± 0.08</td>
</tr>
<tr>
<td>bibliography</td>
<td>-</td>
<td>-</td>
<td>6 μs</td>
<td>4.8</td>
<td>-</td>
</tr>
</tbody>
</table>

- presented in the IEEE - 9th. International congress on Inorganic Scintillators and Their Applications in Winston-Salem (USA) during June 2007 and accepted for publication
Temperature dependence of LAAPDs on CsI(Tl) crystals

Experimental setup

Features

- The detector is electrically isolated by a grounded Faraday box
- The detector and Preamplifier are placed in a metallic box with a humidity control system
- The system is temperature monitorised
Gain dependences on temperature and voltage for Crystal and LAAPD

Remarks

- CsI(Tl) works at room temperature (cryostat not required!)
- \((dG/dV)_{APD} = 3\% / V\) (from Hamamatsu @ G=50)
- \((dG/dT)_{APD} = -2\% / ^\circ C\) (from Hamamatsu @ G=50)
Gain dependences on temperature and voltage
for Crystal and LAAPD

Preliminary results obtained with 1 cm3 CsI(Tl) + S8664-1010

- $(dG/dV)_{APD+Crystal} \sim 2.37\% / V$
- $(dG/dT)_{APD+Crystal} \sim -1\% / ^\circ C$
- A locally linear gain function, related to both T and V, can be obtained
- Temperature drifts are very slow
- Conclusion: Temperature monitorisation will allow gain corrections

\[
\begin{align*}
\chi^2 / ndf & \quad 2008 / 3 \\
p_0 & \quad -4.599e+04 + 121.1 \\
p_1 & \quad 136.3 \pm 0.3741
\end{align*}
\]

\[
\begin{align*}
\chi^2 / ndf & \quad 557 / 23 \\
p_0 & \quad 479 \pm 7.346 \\
p_1 & \quad -36.4 \pm 0.3008
\end{align*}
\]
Comparison between APDs and PIN Diodes

Shaping Time and Energy Resolution

3 µs and 6 µs are good compromise in both cases

Pin Diode has worse energy resolution, but similar trend for energies above 500 keV

Energy resolution with LAAPD is 40 % better than with Pin Diodes

We got a noise level for Pin Diodes around 300-400 keV
Non-Uniformity measurements

Non-Uniformity definitions

Non Uniformity in the Ligth Output

- is one of the factors worsening the energy resolution
- at least, two methods are commonly used to characterise it: G and δ

Definition of G

$$G = \frac{LO_{\text{max}} - LO_{\text{min}}}{LO_{\text{med}}}$$ \hfill (1)

$LO = $ Light Output (Photopeak channel)

Definition of δ

$$\frac{LO}{LO_{\text{med}}} = 1 + \delta \left(\frac{x - x_{\text{med}}}{x_{\text{med}}} \right)$$ \hfill (2)

$x = $ measured position of the crystal

Notes

- δ-value is independent of the number of measured points, but G is not
- infinite number of measured points means $G = 2 \cdot \delta$
- Example:
 - For a 10 cm length crystal, measuring 9 points every 1 cm, one gets $G = 1.6 \cdot \delta$

Non-Uniformity measurements
Non-Uniformity definitions

Non Uniformity in the Light Output
- is one of the factors worsening the energy resolution
- at least, two methods are commonly used to characterise it: G and δ

\[G = \frac{LO_{\text{max}} - LO_{\text{min}}}{LO_{\text{med}}} \quad (1) \]

\[\frac{LO}{LO_{\text{med}}} = 1 + \delta \left(\frac{x - x_{\text{med}}}{x_{\text{med}}} \right) \quad (2) \]

LO = Light Output (Photopeak channel)

\[x = \text{measured position of the crystal} \]

Notes
- δ-value is independent of the number of measured points, but G is not
- infinite number of measured points means \(G = 2 \cdot \delta \)
- Example:
 - For a 10 cm length crystal, measuring 9 points every 1 cm, one gets \(G = 1.6 \cdot \delta \)

Non-Uniformity measurements

Experimental setup

Features

- 5 cm thick lead blocks were used as collimator, 5 cm apart from the crystal.
- 10 cm length crystal coupled to a PMT and also an APD
- 1.33 MeV photopeak from a Co-60 source used for the test
Non-Uniformity measurements
10 cm CsI(Tl) + APD + PMT

Results
- G = 16.7 %; \(\delta = 9.28\% \) for 10 cm CsI(Tl) + HAMA
- G = 9.6 %; \(\delta = 5.33\% \) for 10 cm CsI(Tl) + XP1918

S8664 -1010 Hamamatsu
PMT XP1918 Photonis
Non-Uniformity measurements
10 cm CsI(Tl) + APD + PMT

Remarks

- Comparing the APD with a normalised PMT curve (left plot)
- Half-summing the response of both (right plot)
- The behaviour of APD and PMT is not symmetrical for gammas impinging close to the entrance windows
Energy resolutions below 5 % at 662 keV for CsI(Tl) (1x1x10 cm + LAAPD) are obtained with different electronic setups

- Optimum temperature operation for CsI(Tl) crystals is 20-40°C (cryostat not required!)

- Keeping the temperature stable within ± 2 °C and the bias voltage within ± 1.5 V, the gain drifts can be off-line corrected provided that the temperature and the voltage are continuously monitorised.

- Pin Diodes work at lower bias voltage but their noise level is very high! ⇒ there is a limitation for the events hitting several crystals (add-back)

- Pin Diodes present lower energy resolution than APDs (∼ 7 % @ 662 keV)
Conclusions

- Energy resolutions below 5 % at 662 keV for CsI(Tl) (1x1x10 cm + LAAPD) are obtained with different electronic setups

- Optimum temperature operation for CsI(Tl) crystals is 20-40°C (cryostat not required!)

- Keeping the temperature stable within ± 2 °C and the bias voltage within ± 1.5 V, the gain drifts can be off-line corrected provided that the temperature and the voltage are continuously monitorised.

- Pin Diodes work at lower bias voltage but their noise level is very high! ⇒ there is a limitation for the events hitting several crystals (add-back)

- Pin Diodes present lower energy resolution than APDs (∼ 7 % @ 662 keV)
Conclusions

- Energy resolutions below 5% at 662 keV for CsI(Tl) (1x1x10 cm + LAAPD) are obtained with different electronic setups.

- Optimum temperature operation for CsI(Tl) crystals is 20-40°C (cryostat not required!)

- Keeping the temperature stable within ± 2°C and the bias voltage within ± 1.5 V, the gain drifts can be off-line corrected provided that the temperature and the voltage are continuously monitorised.

- Pin Diodes work at lower bias voltage but their noise level is very high! ⇒ there is a limitation for the events hitting several crystals (add-back)

- Pin Diodes present lower energy resolution than APDs (∼ 7% @ 662 keV)
Conclusions

Energy resolutions below 5 % at 662 keV for CsI(Tl) (1x1x10 cm + LAAPD) are obtained with different electronic setups.

Optimum temperature operation for CsI(Tl) crystals is 20-40°C (cryostat not required!)

Keeping the temperature stable within ± 2°C and the bias voltage within ± 1.5 V, the gain drifts can be off-line corrected provided that the temperature and the voltage are continuously monitorised.

Pin Diodes work at lower bias voltage but their noise level is very high! ⇒ there is a limitation for the events hitting several crystals (add-back)

Pin Diodes present lower energy resolution than APDs (∼ 7 % @ 662 keV)

H. Alvarez−Pol et al. A first proposal for the geometry of the Total Absorption Calorimeter design at R3B. Internal Note: R3B_CAL_01/05. http://www.usc.es/genp/

Hamamatsu Photonics: Photomultiplier Tubes and Related Products
